

Unveiling the Neural Nets

Sri Harsha G

Data scientist by profession...Teacher by passion...

sriharsha@cyberigence.com

Outline

- What are Neural Networks?
- Biological Neural Networks
- ANN The basics
- Feed forward net
- Training
- Example Voice recognition
- Applications Feedforward nets
- Recurrency
- ConvNets
- Conclusion

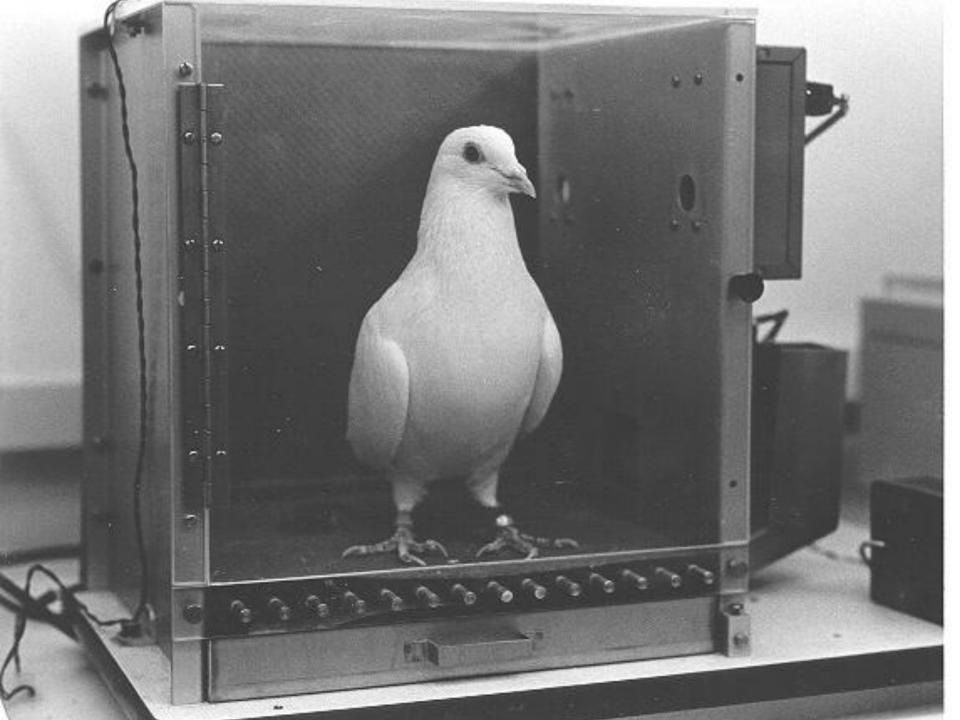
What are Neural Networks?

- Models of the brain and nervous system
- Highly parallel
 - Process information much more like the brain than a serial computer
- Learning
- Very simple principles
- Very complex behaviours
- Applications
 - As powerful problem solvers
 - As biological models

Biological Neural Nets

Pigeons as art experts
 (Watanabe et al. 1995)

- Experiment:
 - Pigeon in Skinner box
 - Present paintings of two different artists (e.g. Chagall / Van Gogh)
 - Reward for pecking when presented a particular artist (e.g. Van Gogh)

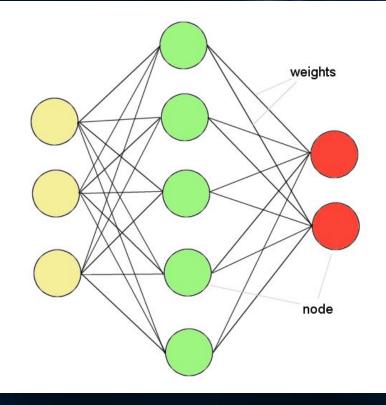


- Pigeons were able to discriminate between Van Gogh and Chagall with 95% accuracy (when presented with pictures they had been trained on)
- Discrimination still 85% successful for previously unseen paintings of the artists
- Pigeons do not simply memorise the pictures
- They can extract and recognise patterns (the 'style')
- They generalise from the already seen to make predictions
- This is what neural networks (biological and artificial) are good at (unlike conventional computer)

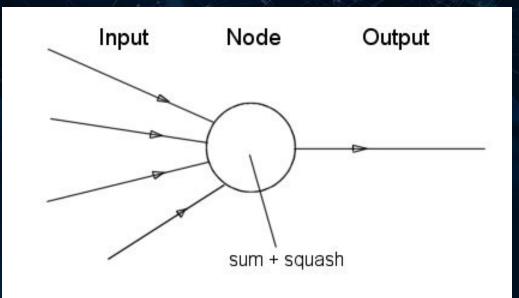
ANNs – The basics

ANNs incorporate the two fundamental components of biological neural nets:

Neurons (nodes)
 Synapses (weights)



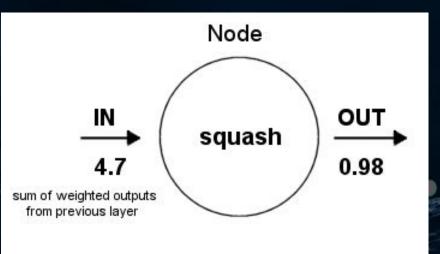




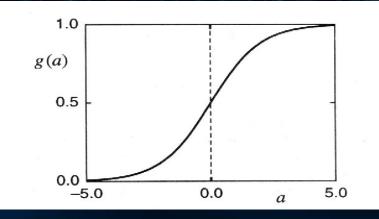
#PuneDevCon

Let's look at a Neuron in detail

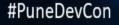
Structure of a node:



Squashing function limits node output:



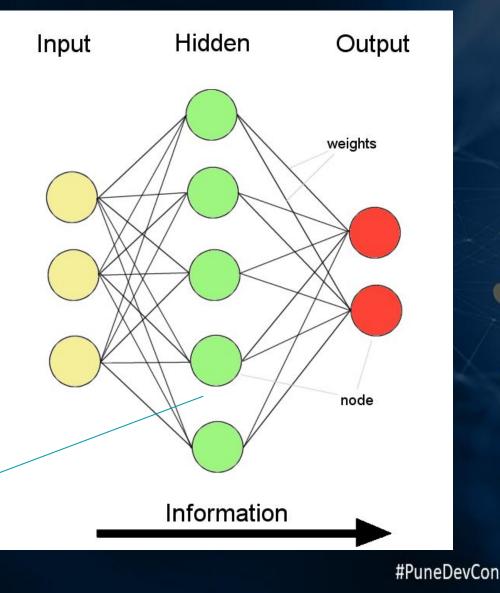
Let's look at some activation functions...



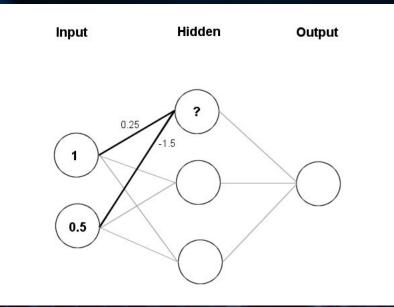
Feed-forward nets

- Information flow is unidirectional
 Data is presented to *Input layer*
 - Passed on to Hidden Layer
 - Passed on to Output layer
- Information is distributed
- Information processing is parallel

Internal representation (interpretation) of data

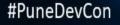


Feeding data through the net:

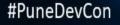


$(1 \times 0.25) + (0.5 \times (-1.5)) = 0.25 + (-0.75) = -0.5$

What is hidden inside a neuron?



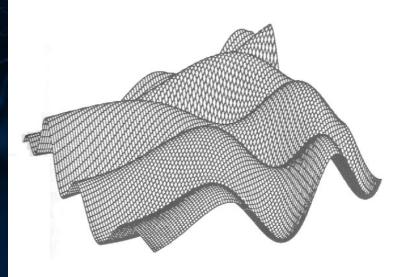
How can we find the right weights?

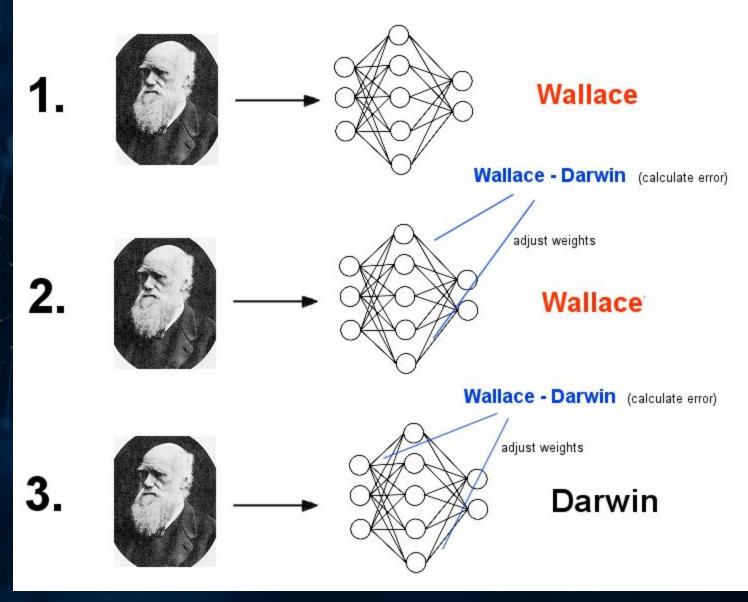


Training the Network - Learning

- Backpropagation
 - Requires training set (input / output pairs)
 - Starts with small random weights
 - Error is used to adjust weights (supervised learning)

Gradient descent on error landscape





#PuneDevCon

Advantages

- It works!
- Relatively fast

• Downsides

- Requires a training set
- Can be slow
- Probably not biologically realistic

Alternatives to Backpropagation

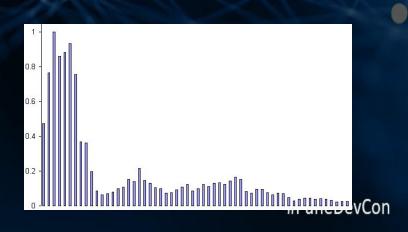
- Hebbian learning
 - Not successful in feed-forward nets
- Reinforcement learning
 - Only limited success
- Artificial evolution
 - More general, but can be even slower than backprop

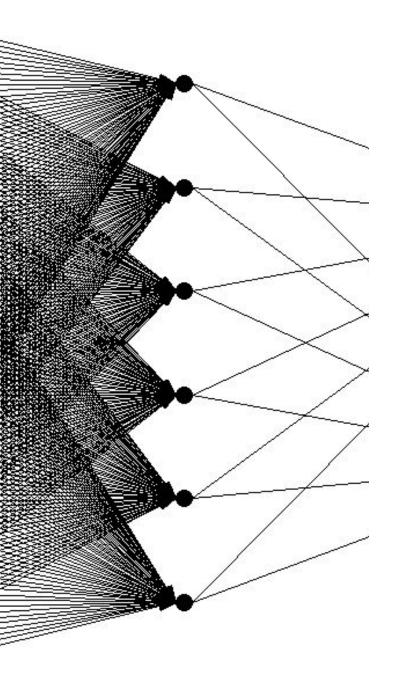
Example: Voice Recognition

 Task: Learn to discriminate between two different voices saying "Hello"

Data

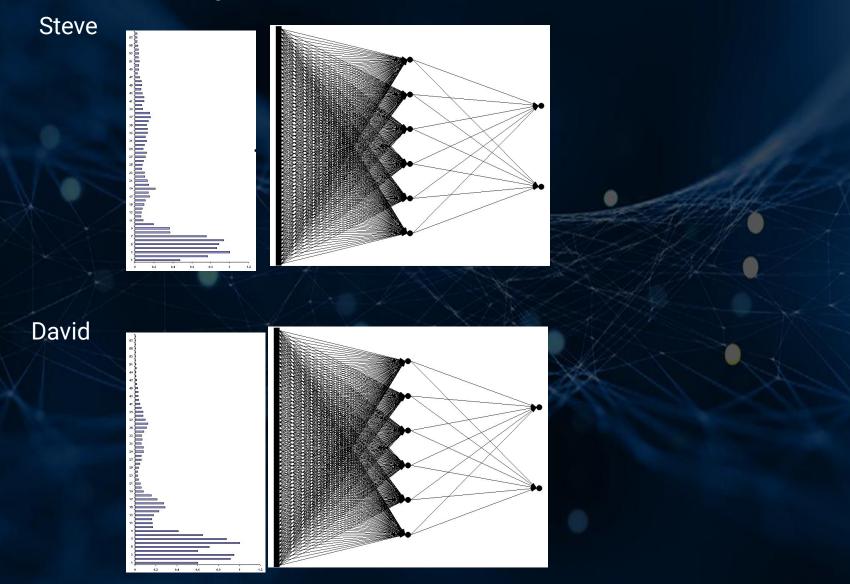
- Sources
 - Steve Simpson
 - David Raubenheimer
- Format
 - Frequency distribution (60 bins)
 - Analogy: cochlea



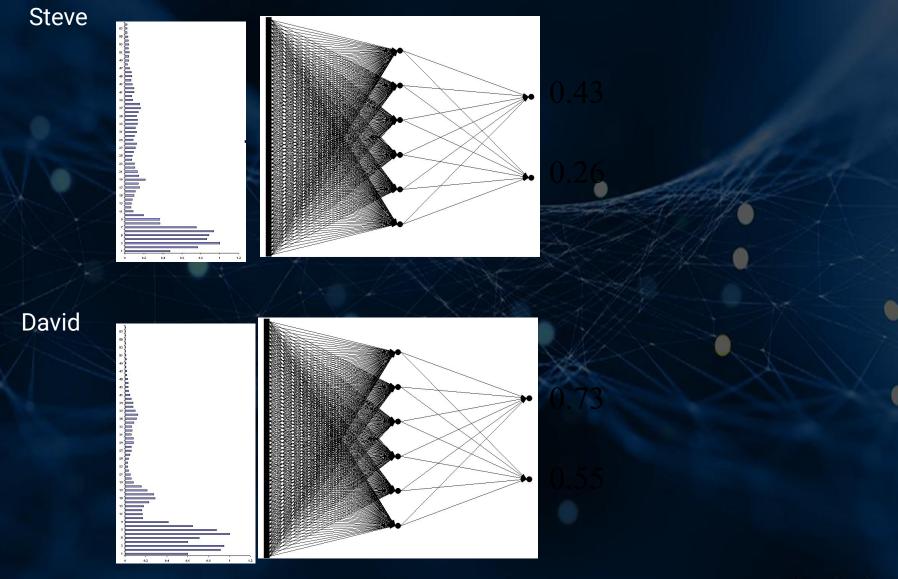


- Network architecture
 - Feed forward network
 - 60 input (one for each frequency bin)
 - 6 hidden
 - 2 output (0-1 for "Steve", 1-0 for "David")

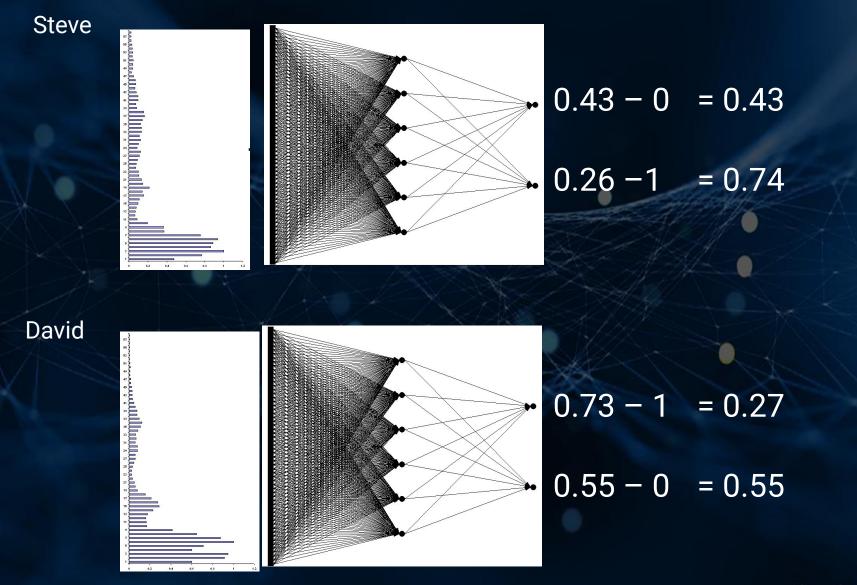
• Presenting the data



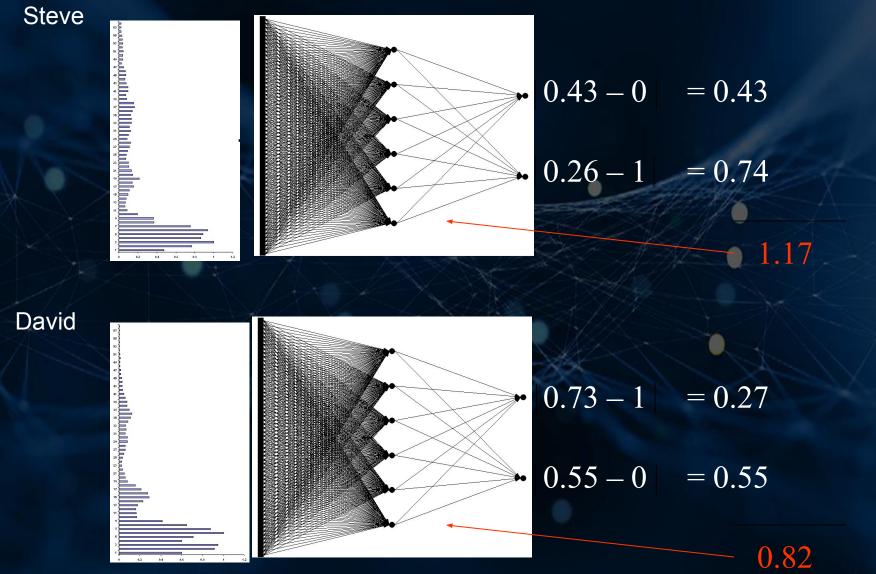
Presenting the data (untrained network)



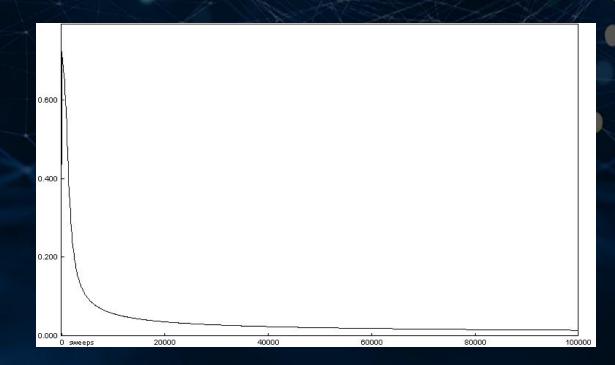
Calculate error



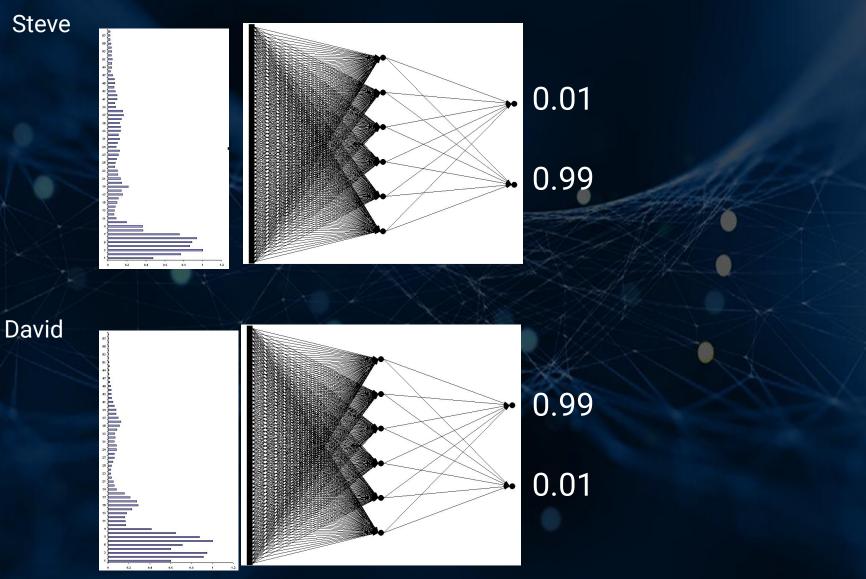
Backprop error and adjust weights



- Repeat process (sweep) for all training pairs
 - Present data
 - Calculate error
 - Backpropagate error
 - Adjust weights
- Repeat process multiple times



• Presenting the data (trained network)

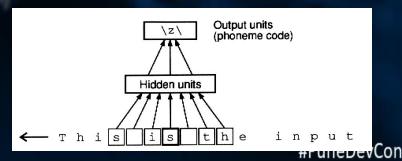


#PuneDevCon

IG

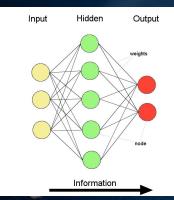
Applications of Feed-forward nets

- Pattern recognition
 - Character recognition
 - Face Recognition
- Sonar mine/rock recognition (Gorman & Sejnowksi, 1988)
- Navigation of a car (Pomerleau, 1989)
- Stock-market prediction
- Pronunciation (NETtalk)

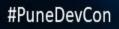


Recurrent Networks

- Feed forward networks:
 - Information only flows one way
 - One input pattern produces one output
 - No sense of time (or memory of previous state)
- Recurrency
 - Nodes connect back to other nodes or themselves
 - Information flow is multidirectional
 - Sense of time and memory of previous state(s)
- Biological nervous systems show high levels of recurrency (but feed-forward structures exists too)



ConvNets



۲

Motivation–Image Data

- So far, the structure of our neural network treats all inputs interchangeably.
- No relationships between the individual inputs
- Just an ordered set of variables
- We want to incorporate domain knowledge into the architecture of a Neural Network.

Motivation

Image data has important structures, such as;

- "Topology" of pixels
- Translation invariance
- Issues of lighting and contrast
- Knowledge of human visual system
- Nearby pixels tend to have similar values
- Edges and shapes
- Scale Invariance—objects may appear at different sizes in the image.

Motivation–Image Data

- Fully connected would require a vast number of parameters
- MNIST images are small (32 x 32 pixels) and in grayscale
- Color images are more typically at least (200 x 200) pixels x 3 color channels (RGB) = 120,000 values.
- A single fully connected layer would require (200x200x3)2 = 14,400,000,000 weights!
- Variance (in terms of bias-variance) would be too high
- So we introduce "bias" by structuring the network to look for certain kinds of patterns

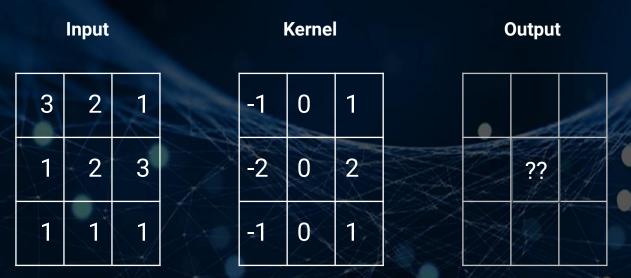
Motivation

- Features need to be "built up"
- Edges -> shapes -> relations between shapes
- Textures
- Cat = two eyes in certain relation to one another + cat fur texture.
- Eyes = dark circle (pupil) inside another circle.
- Circle = particular combination of edge detectors.
- Fur = edges in certain pattern.

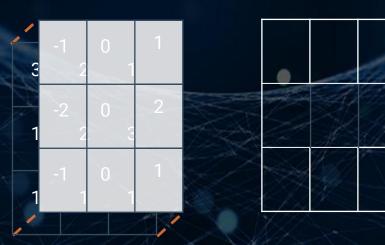
Kernels

- A kernel is a grid of weights "overlaid" on image, centered on one pixel
- Each weight multiplied with pixel underneath it
- Output over the centered pixel is $P_{=1} W_p \cdot pixel_p$
- Used for traditional image processing techniques:
 - Blur
 - Sharpen
 - Edge detection
 - Emboss

Kernel: 3x3 Example

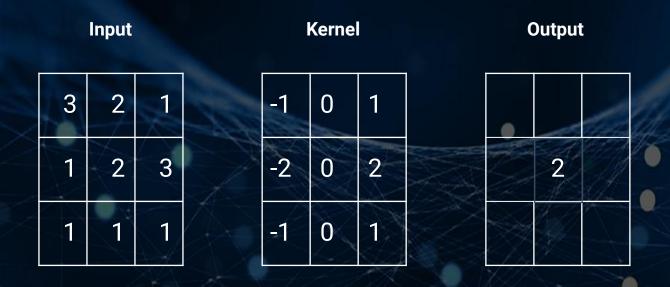


Kernel: 3x3 Example

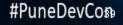


Output

Kernel: 3x3 Example

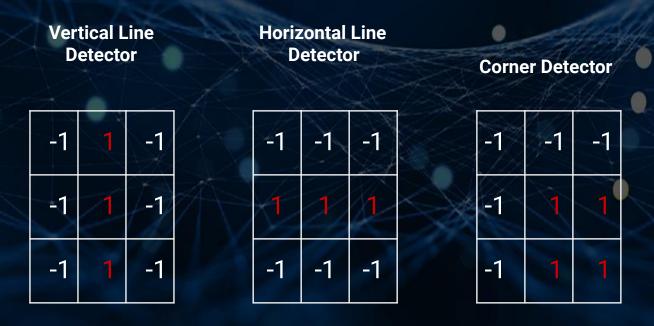


= -3 + 1 - 2 + 6 - 1 + 1 = 2



Kernels as Feature Detectors

Can think of kernels as a "local feature detectors"



Convolutional Neural Nets

Primary Ideas behind Convolutional Neural Networks:

- Let the Neural Network learn which kernels are most useful
- Use same set of kernels across entire image (translation invariance)
- Reduces number of parameters and "variance" (from bias-variance point of view)

Padding

- Using Kernels directly, there will be an "edge effect"
- Pixels near the edge will not be used as "center pixels" since there are not enough surrounding pixels
- Padding adds extra pixels around the frame
- So every pixel of the original image will be a center pixel as the kernel moves across the image
- Added pixels are typically of value zero (zero-padding)

Without Padding

1	2	0	3	1		-1	1	2	-2
1	0	0	2	2		1	1	0	
2	1	2	1	1		-1	-2	0	
0	0	1	0	0	A	×.	Kernel		Output
1	2	1	1	1					

Input

#PuneDevCo₽

With Padding

0	0	0	0	0	0	0	
0	1	2	0	3	1	0	
0	1	0	0	2	2	0	258
0	2	1	2	1	1	0	X
0	0	0	1	0	0	0	
0	1	2	1	1	1	0	1
0	0	0	0	0	0	0	

Input

-1	1	2	
1	1	0	
-1	-2	0	
K	ernel	3A	

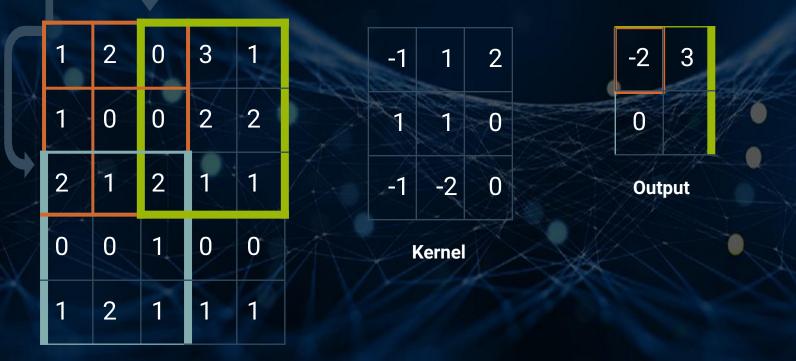
-1

Output

Stride

- The "step size" as the kernel moves across the image
- Can be different for vertical and horizontal steps (but usually is the same value)
- When stride is greater than 1, it scales down the output dimension

Stride 2 Example—No Padding



Input

#PuneDevCon

Stride 2 Example—with Padding

2

Output

3

	0	0	0	0	0	0	0						
	0	1	2	0	3	1	0		-1	1	2		
X	0	1	0	0	2	2	0	- St	4	1	0		
	0	2	1	2	1	1	0						
~	0	0	0	1	0	0	0		-1	-2	0		
7	0	1	2	1	1	1	0	A	K	Cernel		H	Ž
	0	0	0	0	0	0	0						

Input

#PuneDevConv

- In images, we often have multiple numbers associated with each pixel location.
- These numbers are referred to as "channels"
 - RGB image—3 channels
 - CMYK—4 channels
- The number of channels is referred to as the "depth"
- So the kernel itself will have a "depth" the same size as the number of input channels
- Example: a 5x5 kernel on an RGB image
 - There will be 5x5x3 = 75 weights

Depth

- The output from the layer will also have a depth
- The networks typically train many different kernels
- Each kernel outputs a single number at each pixel location
- So if there are 10 kernels in a layer, the output of that layer will have depth 10.

Pooling

- Idea: Reduce the image size by mapping a patch of pixels to a single value.
- Shrinks the dimensions of the image.
- Does not have parameters, though there are different types of pooling operations.

Pooling: Max-pool

- For each distinct patch, represent it by the maximum
- 2x2 maxpool shown below

2	1	0	-1
-3	8	2	5
1	-1	3	4
0	1	1	-2

Pooling: Average-pool

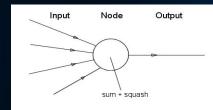
- For each distinct patch, represent it by the average
- 2x2 avgpool shown below

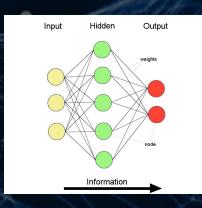
2	1	0	-1
-3	8	2	5
1	-1	3	4
0	1	1	-2

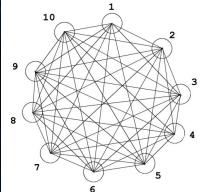
	2	1. 5
vgpool	.25	1. 5

Recap – Neural Networks

- Components biological plausibility
 - Neuron / node
 - Synapse / weight
- Feed forward networks
 - Unidirectional flow of information
 - Good at extracting patterns, generalisation and prediction
 - Distributed representation of data
 - Parallel processing of data
 - Training: Backpropagation
 - Not exact models, but good at demonstrating principles
- Recurrent networks
 - Multidirectional flow of information
 - Memory / sense of time
 - Complex temporal dynamics (e.g. CPGs)
 - Various training methods (Hebbian, evolution)
 - Often better biological models than FFNs







#PuneDevCon

Sri Harsha Gajavalli

Founder @ICyberSol | Lead @socaity | Startup Tech Mentor/AI consultant | Researcher, AI in CyberSec

- Intel Software Innovator
- Mentor of Change, Atal Innovation Mission
- Community Dev Lead, Google ; GDE [soon]
- Tech Visionary award winner, InterCon
- Google Summer of Code Mentor, OWASP [2018]
- National Entrepreneurship Award, Gol [2018]
- Fb Open Source Mentor [2018]
- Top 100, Fb Bug Hunter [2017]

Reach me:

@Email: sriharsha.g15@gmail.com

@Github: https://github.com/SriHarshaGajavalli

@LinkedIn: https://www.linkedin.com/in/sriharshagajavalli

@Facebook: https://facebook.com/harsha.gajavalli

@Twitter: @Sri_HarshaG