
Unveiling the Neural Nets

Sri Harsha G
Data scientist by profession...Teacher by passion...

sriharsha@cyberigence.com



Outline

• What are Neural Networks?

• Biological Neural Networks

• ANN – The basics

• Feed forward net

• Training

• Example – Voice recognition

• Applications – Feedforward nets

• Recurrency

• ConvNets

• Conclusion



What are Neural 
Networks?

• Models of the brain and nervous 
system

• Highly parallel

– Process information much more like 
the brain than a serial computer

• Learning

• Very simple principles

• Very complex behaviours

• Applications

– As powerful problem solvers

– As biological models



Biological 
Neural Nets

• Pigeons as art experts 
(Watanabe et al. 1995)

– Experiment:

• Pigeon in Skinner box

• Present paintings of two 
different artists (e.g. Chagall / 
Van Gogh)

• Reward for pecking when 
presented a particular artist 
(e.g. Van Gogh)









• Pigeons were able to discriminate between Van Gogh and Chagall with 
95% accuracy (when presented with pictures they had been trained on)

• Discrimination still 85% successful for previously unseen paintings of 
the artists

• Pigeons do not simply memorise the pictures

• They can extract and recognise patterns (the ‘style’)

• They generalise from the already seen to make predictions

• This is what neural networks (biological and artificial) are good at 
(unlike conventional computer)



ANNs – The basics

ANNs incorporate the two fundamental components of 
biological neural nets:

1.  Neurons (nodes)

2.  Synapses (weights)



• Neurone vs. Node



Let’s look at a Neuron in detail



Structure of a node:

Squashing function limits node output:



Let’s look at some activation 
functions...



Feed-forward nets

• Information flow is unidirectional
• Data is presented to Input layer
• Passed on to Hidden Layer
• Passed on to Output layer

• Information is distributed

• Information processing is parallel

Internal representation (interpretation) of data



Feeding data through the net:

(1 × 0.25) + (0.5 × (-1.5)) = 0.25 + (-0.75)   =  - 0.5 



What is hidden inside a 
neuron?



How can we find the right 
weights?



Training the Network - Learning

• Backpropagation
– Requires training set (input / output pairs)
– Starts with small random weights
– Error is used to adjust weights (supervised learning)

Gradient descent on error landscape





• Advantages
– It works!
– Relatively fast

• Downsides
– Requires a training set
– Can be slow
– Probably not biologically realistic

• Alternatives to Backpropagation
– Hebbian learning

• Not successful in feed-forward nets
– Reinforcement learning

• Only limited success
– Artificial evolution

• More general, but can be even slower than backprop



Example: Voice Recognition
• Task: Learn to discriminate between two different voices 

saying “Hello”

• Data 
– Sources

• Steve Simpson
• David Raubenheimer

– Format
• Frequency distribution (60 bins)
• Analogy: cochlea



• Network architecture

– Feed forward network

• 60 input (one for each 
frequency bin)

• 6 hidden

• 2 output (0-1 for “Steve”, 
1-0 for “David”)



• Presenting the data
Steve

David



• Presenting the data (untrained network)
Steve

David

0.43

0.26

0.73

0.55



• Calculate error
Steve

David

0.43 – 0 = 0.43

0.26 –1 = 0.74

0.73 – 1 = 0.27

0.55 – 0 = 0.55



Backprop error and adjust weights
Steve

David

0.43 – 0 = 0.43

0.26 – 1 = 0.74

0.73 – 1 = 0.27

0.55 – 0 = 0.55

1.17

0.82



• Repeat process (sweep) for all training pairs
– Present data
– Calculate error
– Backpropagate error
– Adjust weights

• Repeat process multiple times



• Presenting the data (trained network)
Steve

David

0.01

0.99

0.99

0.01



Applications of Feed-forward nets
– Pattern recognition

• Character recognition
• Face Recognition

– Sonar mine/rock recognition (Gorman & Sejnowksi, 1988)

– Navigation of a car (Pomerleau, 1989)

– Stock-market prediction

– Pronunciation (NETtalk)



Recurrent Networks
• Feed forward networks:

– Information only flows one way
– One input pattern produces one output
– No sense of time (or memory of previous state)

• Recurrency
– Nodes connect back to other nodes or themselves
– Information flow is multidirectional
– Sense of time and memory of previous state(s)

• Biological nervous systems show high levels of recurrency (but 
feed-forward structures exists too)



ConvNets



Motivation—Image Data

32

▪ So far, the structure of our neural network treats all inputs 
interchangeably.

▪ No relationships between the individual inputs

▪ Just an ordered set of variables

▪ We want to incorporate domain knowledge into the architecture of a 
Neural Network.



Motivation

33

Image data has important structures, such as;
▪ ”Topology” of pixels

▪ Translation invariance

▪ Issues of lighting and contrast

▪ Knowledge of human visual system

▪ Nearby pixels tend to have similar values

▪ Edges and shapes

▪ Scale Invariance—objects may appear at different sizes 
in the image.



Motivation—Image Data

34

▪ Fully connected would require a vast number of parameters

▪ MNIST images are small (32 x 32 pixels) and in grayscale

▪ Color images are more typically at least (200 x 200) pixels x 3 color 
channels (RGB) =  120,000 values.

▪ A single fully connected layer would require (200x200x3)2 = 
14,400,000,000 weights!

▪ Variance (in terms of bias-variance) would be too high

▪ So we introduce “bias” by structuring the network to look for certain 
kinds of patterns



Motivation

35

▪ Features need to be “built up”

▪ Edges -> shapes -> relations between shapes

▪ Textures

▪ Cat = two eyes in certain relation to one another + 
cat fur texture.

▪ Eyes = dark circle (pupil) inside another circle.

▪ Circle = particular combination of edge detectors.

▪ Fur = edges in certain pattern.



Kernels

36

▪ A kernel is a grid of weights “overlaid” on image, centered 
on one pixel

▪ Each weight multiplied with pixel underneath it
▪ Output over the centered pixel is 𝑃

=1 𝑊𝑝 ⋅ 𝑝𝑖𝑥𝑒𝑙𝑝𝑝

▪ Used for traditional image processing techniques:
– Blur
– Sharpen
– Edge detection
– Emboss



Kernel: 3x3 Example

Input OutputKernel

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

??

37



Kernel: 3x3 Example

Output

3 2 1

1 2 3

1 1 1

-1 0

38

1

-2 0 2

-1 0 1



2

Kernel: 3x3 Example

Input OutputKernel

39

= −3 + 1 − 2 + 6 − 1 + 1 = 2

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1



Kernels as Feature Detectors

40

Can think of kernels as a ”local feature detectors”

Vertical Line  
Detector Corner Detector

Horizontal Line  
Detector

-1 1 -1

-1 1 -1

-1 1 -1

-1 -1 -1

1 1 1

-1 -1 -1

-1 -1 -1

-1 1 1

-1 1 1



Convolutional Neural Nets

41

Primary Ideas behind Convolutional Neural Networks:

▪ Let the Neural Network learn which kernels are most useful

▪ Use same set of kernels across entire image (translation 
invariance)

▪ Reduces number of parameters and “variance” (from 
bias-variance point of view)



Padding

42

▪ Using Kernels directly, there will be an “edge effect”

▪ Pixels near the edge will not be used as “center pixels” since there 
are not enough  surrounding pixels

▪ Padding adds extra pixels around the frame

▪ So every pixel of the original image will be a center pixel as 
the kernel moves  across the image

▪ Added pixels are typically of value zero (zero-padding)



-2

Without Padding

OutputKernel

1 2 0 3 1

1 0 0 2 2

2 1 2 1 1

0 0 1 0 0

1 2 1 1 1

43

-1 1 2

1 1 0

-1 -2 0

Input



-1

With Padding

Output

Kernel

-1 1 2

1 1 0

-1 -2 0

44

0 0 0 0 0 0 0

0 1 2 0 3 1 0

0 1 0 0 2 2 0

0 2 1 2 1 1 0

0 0 0 1 0 0 0

0 1 2 1 1 1 0

0 0 0 0 0 0 0

Input



Stride

45

▪ The ”step size” as the kernel moves across the image

▪ Can be different for vertical and horizontal steps (but usually is 
the same value)

▪ When stride is greater than 1, it scales down the output 
dimension



1 2 0 3 1

1 0 0 2 2

2 1 2 1 1

0 0 1 0 0

1 2 1 1 1

Stride 2 Example—No Padding

Input

Output

Kernel

-2 3

0

46

-1 1 2

1 1 0

-1 -2 0



Stride 2 Example—with Padding

OutputKernel

0 0 0 0 0 0 0

0 1 2 0 3 1 0

0 1 0 0 2 2 0

0 2 1 2 1 1 0

0 0 0 1 0 0 0

0 1 2 1 1 1 0

0 0 0 0 0 0 0

Input

-1 1 2

1 1 0

-1 -2 0

-1 2

3

47



Depth

48

▪ In images, we often have multiple numbers associated with each 
pixel location.

▪ These numbers are referred to as “channels”
– RGB image—3 channels
– CMYK—4 channels

▪ The number of channels is referred to as the “depth”

▪ So the kernel itself will have a “depth” the same size as the number 
of input channels

▪ Example: a 5x5 kernel on an RGB image

– There will be 5x5x3 = 75 weights



Depth

49

▪ The output from the layer will also have a depth

▪ The networks typically train many different kernels

▪ Each kernel outputs a single number at each pixel location

▪ So if there are 10 kernels in a layer, the output of that layer will 
have depth 10.



Pooling

50

▪ Idea: Reduce the image size by mapping a patch of pixels to a 
single value.

▪ Shrinks the dimensions of the image.

▪ Does not have parameters, though there are different types of 
pooling operations.



8 5

1 4

Pooling: Max-pool

▪ For each distinct patch, represent it by the maximum

▪ 2x2 maxpool shown below

maxpool

2 1 0 -1

-3 8 2 5

1 -1 3 4

0 1 1 -2

51



2 1.
5

.25 1.
5

Pooling: Average-pool

▪ For each distinct patch, represent it by the average

▪ 2x2 avgpool shown below

avgpool

2 1 0 -1

-3 8 2 5

1 -1 3 4

0 1 1 -2

52



Recap – Neural Networks

• Components – biological plausibility
– Neuron / node
– Synapse / weight

• Feed forward networks
– Unidirectional flow of information
– Good at extracting patterns, generalisation and 

prediction
– Distributed representation of data
– Parallel processing of data
– Training: Backpropagation
– Not exact models, but good at demonstrating 

principles

• Recurrent networks
– Multidirectional flow of information
– Memory / sense of time
– Complex temporal dynamics (e.g. CPGs)
– Various training methods (Hebbian, evolution)
– Often better biological models than FFNs



Sri Harsha Gajavalli
Founder @ICyberSol  |  Lead  @socaity  |  Startup Tech 
Mentor/AI consultant  |  Researcher, AI in CyberSec 

● Intel Software Innovator

● Mentor of Change, Atal Innovation Mission

● Community Dev Lead, Google ; GDE [soon]

● Tech Visionary award winner, InterCon

● Google Summer of Code Mentor, OWASP [2018]

● National Entrepreneurship Award, GoI [2018]

● Fb Open Source Mentor [2018]

● Top 100, Fb Bug Hunter [2017]



@Email: sriharsha.g15@gmail.com

@Github:   https://github.com/SriHarshaGajavalli

@LinkedIn: https://www.linkedin.com/in/sriharshagajavalli

@Facebook: https://facebook.com/harsha.gajavalli

@Twitter: @Sri_HarshaG

Reach me:

mailto:sriharsha.g15@gmail.com
https://github.com/SriHarshaGajavalli
https://www.linkedin.com/in/sriharshagajavalli
https://facebook.com/harsha.gajavalli
https://twitter.com/Sri_HarshaG

